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If it is important that a certain mechanical system be in equilibrium, 
then it is almost always necessary to choose the system parameters in 
such a way that the equilibrium be not only stable but asymptotically 
stable as well. Damping mechanisms are for this reason introduced into 
certain components of the system, thus assuring the decay of oscilla- 
tions. It may turn out, however, that for effecting asymptotic stability 
in a mechanical system it is sufficient to introduce damping in not all 
but only part of its coordinates. The steady-state motions may also 
possess such a property. Such systems, asymptotically stable and subject 
to the action of dissipative forces with incomplete dissipation, are 
studied in the present paper. 

In addition to the well-known theorems on asymptotic stability [ 1.2 I, 
the theorem given in [ 3 1 is applied in the paper. A particular but basic 
case of this theorem on asymptotic stability was formulated in [ 4 1 ; It 
was this theorem which accounted for the progress made in studying the 
problem. We will note that this idea was expressed by Chetaev somewhat 
earlier and was demonstrated by him with the aid of a particular example 
[2 1. 

Initially, we recall the theorem of Barbashin and Krasovstii. 

Consider the equation of perturbed motion 

dxi/dt = Xi(z,, . . . , in, t) (0.1) 

the right-hand sides of which Xi(Xi, t) shall be periodic functions of 
time t and period 8 (or explicitly independent of t) definite and 
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continuous in the region 

Sllp((.~l~~...+ls,,~)='j:c,~/QN; N-=const, or H=x, (0.2) 
(-33<<t<+33) 

In addition, we assume that in each region 11 xs (1 < H < H the func- 
tions Xi satisfy the Lipschitz conditions for the varia les njt i.e. . it 

1 Xi (Xi", t) - Xi (Xi', t) j -< Lp ij .ri" - Ji' ii 

Theorem. If the perturbed equations are such that it is possible to 
construct a function V(X, t) (periodic in time t with period 8 or ex- 
plicitly independent of time) which is positive-definite, has an infinitely 
small upper bound in the region (0.2), satisfies the inequality 

in the region 11 TC, 11 -< Leo, 0 .< t < 0) ( id (-0 for /\xsl[ = H,) (HO > H, > H) 

and if in addition the function is such that its derivative satisfies the 
following conditions: 

1) Derivative $u/dt < 0 in the region (0.2); 

2) Derivative du/dt may be equal to zero only at points of the set M 
not completely containing the half-trajectories of the system (2.1) 
x(x0, to> t), 0 < t < 00 (with the exception of solution ni = 0), then 
the solution ni = 0 is asymptotically stable and the regioh (1 xs (( < H, 
is located in the attraction region for the point x = 0. 

1. Consider a holonomic mechanical system with stationary constraints 
subject to forces having a potential function independant of time. Suppose 
the system is in equilibrium where the combination of second-order terms 
in the potential function expansion is a quadratic form 

6’U = ; i pijqiqj 

i=l 

negative-definite with respect to ql, . . . . q,, the variations of the 
holonomic and stationary coordinates of the system in the neighborhood 
of equilibrium. Such an equilibrium will be stable according to a 
theorem of Lagrange. 

Let the system be subjected to the dissipative forces R,-,+ l,...,R, 
with partial dissipation along the last n - k coordinates q,-k+ l,...,qn 
such that 

n R-. .='L n h+l aq; 2 
2 

t]=n-kfl 
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Here F is a negative-definite quadratic form of 4,-k+ Ir . . . . 4, 
with constant coefficients. 

If 62T is a combination of terms of second order in the kinetic energy 
expansion then, on the strength of (1.1) 

and the motion is stable as well as asymptotically stable with respect 
to 4 i [5 1. According to the theorem of Barbashin and 
Kras&k&'Che'm~ti& will be asymptotically stable if Equations (1.1) 
possess no trajectories fully located in the region q,-k+ 1 = qnek+ 1o, 

. . . , qn = qno- If the equations of first approximation do not possess 
such a trajectory, then the motion will be asymptotically stable on the 
strength of the system of first approximation, which we will take in the 
form solved with respect to ii 

. . 

'Ihese equations possess the indicated particular solution if in the 
first n - k equations, where q,- k+ 1, . . . . qn are assumed constant, 
there exists a particular solution satisfying the equations 

ii = ai,gl + . . . + ‘in--h.qn--k + ui,~--h.+lQ,~-k+l” + . ’ * + alllqrlo 

(i=1,2,...,n-k) 

0 = ai,g, + . . . + ‘it,-kqfl-k + ‘in-~+lq,,-~+1’ + + ‘(rrQRa (le2) 

(i = II -- /i + 1, , a) 

Any particular solution of the first n - k equations for qn = q,,“, 

. . . . 4,-k+ 1 = qnmk+ 1o, . . . can be expressed as a sum. This particular 
solution will be formed from the solution of the system 

. . 
Qi = Uilg, + . . . -1 Ui,_.h.q,,-h. 

and some constant components q,‘, . . . . qnAko which will be found from 
the equations 

ai,q,‘+ * * * + Qin-~Qn-~o = - uin-~+lq~~-~+l” - . . ’ - ‘ingn” ( 1*3) 

(ir-I,...,n-It) 

Ihey will always be found uniquely, since the determinant of the last 
system is known to be nonzero and a211 was assumed negative-definite. 
Ihese constants qIo, . . . . qnbko must necessarily satisfy the system 
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UilQIC + * . * +ainqno=o (i=n-kkl,...,n) (1.4) 

and, consequently, must satisfy the system (1,3), (1.4). Therefore 
qio = 0 are all zero, since the determinant of the system is nonzero. 

Thus the question has been reduced to the existence of a solution for 
the system 

ii = ailql+ . . . + a,n--h.qn--k (i = 1, . . . . n - k) 

located in the region 

ai,!& + . - . + uin-hq,l-t = 0 (i = n - k + I,, . . , n) 

If such a solution exists, then along it one must have 

= ail (allq, + . . . + a,,-hq1) + . . . + &n--h. (&-k,~% + * * l + ~-ksn-k$+k) 

(i=n--j-l,..., n) 
(1.5) 

and furthermore all linear forms obtained by twofold, fourfold, . . . , 
2n-fold differentiation are equal to zero on the strength of the first 
n- k equations where q,,- k+ 1 = 0, . . . , q,, = 0. These forms are 

n-k 

2 a~lujluslqi + ’ ’ ’ i- uin-kuj,+kam-kqn-k = ’ 
i. j,s=l (1.G) 

n-k 

2 L?1 ~ylavlavl, . . . , a, ,,+,l!h + ’ * . + ‘v,,,-k’ ’ * - 9 u’p+,-k$,-,,. = ’ 
VI.. I Vp+z,,-k 

If among them there are n - k independent ones, then this means that 
such a non-trivial solution does not exist and the motion is asymptotic- 
ally stable, since on the strength of the first approximation the 
asymptotic stability can occur only when all characteristic exponents of 
that system have negative real parts. 

Let 9 ,,-k+ls ***, qn be expressed by means of normal coordinates zl, 
. . . ) xn as 

qi = bi,Z, + . . . + binZn (i = n - k + 1, . . . , n) (l-7) 

‘Ibe equations of first approximation in normal coordinates are of the 
form 
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whereby the dF/';i vanish when in-k+ 1 = . . . = 4, = 0. Differentiating 
each of the linear forms (1.7) 2pi times we obtain the equations 

bilh,'Xl + . . . + bi,h*'& = 0 (l=l,.'.,pi; i=n--Is+l,...,n) (1.s) 

It is easy to note that Equations (1.21, (1.5) in conjunction with 

4,-k+ 1 = .*. = qn = 0, (1.6) are equivalent to (1.7) in conjunction 
with (1.8) since they follow from the same equations differentiated 
several times in view of the same system of differential equations. 

Any minor of order pi in the ith group of equations (1.71, (1.8) is 
of the form of a Vandermonde determinant [6 1 

det 11 bijPihjPiPi/] = n bij ( 
k<j=j,,....jp, 

Consider initially the case k = 1 
equation 

hi - 1Lk) (pi=o,l,. . .) a-- 1) 

Differentiating 2n - 2 times the 

- h,,J,, = 0 

we will obtain n linear forms with the determinant D = (1 b,jXj’-‘ll 
(ij = 1, . . . . n). 

According to Vandermonde's theorem 

'Ihis determinant will not be zero if there are no zeros among b,j and 
if there are no equal quantities among h,, . . . . X,. 

Let k = 2. Differentiating 2(p, - 1) and 2(p2 - 

L-1.1~1 + . . . + &,-1.n~,, = 0 

b,,ln + . . . + bnnxn = 0 

we will obtain a system of p1 + p2 = n linear forms with the determinant 

1 . . . . . . . . . . 

b 
Dz = 

n-1.1 
hIPI- . b h PI-1 

n-1.n n 

b 
7ll . . . b nn 

)............... 

bnlhlPz--l b,,,,h,,P2-1 

) times the equations 



984 G.X. Pozharitskii 

Taking the minors of order p1 from the first p1 rows, multiplying them 
by the minors of order p2 from the last pz rows and adding we will ob- 
tain, according to Laplace's theorem, the required determinant. 

If the minor of order p1 consists of the columns with numbers jls, 
. s . . . ) 

‘P, ’ 
then the minor of order p2, by which it is multiplied, con- 

sists of the columns with numbers iIs, . . . . i 
P2 

' where the numbers jls, 

. . . , . SiS 
IPl 1 J s--j tpz ' assume values of 1 to n. lheir product can be 

expressed in the form 

Summing these expressions over all possible s we obtain the determin- 
ant D,. If among the principal frequencies of the system there are three 
equal to each other, then the last determinant is equal to zero. Indeed, 
in any division of A,, . . . . A, into two groups, the equality of any two 
numbers in any one group results in vanishing of the above products. It 
is easy to show that if it is impossible to indicate more than two equal 
principal frequencies Xi, then by a suitable choice of two linear combi- 
nations qnsl = q, = 0 it is possible to succeed in preventing their de- 
terminant D, from vanishing. 

Indeed, let us consider pairs of equal principal frequencies and 
divide the frequencies into two groups in such a way that no pair would 
completely fall into any one group. If there are q such pairs, then de- 
noting by A,, . . . . X4 the principal frequencies of the pairs we will con- 
sider two linear forms 

L-1.1x1 + . . . , + L.qxq = 0 

bn,q+lxq+l + . . . bnnxn = 0 

Differentiating the first form 2(q - 1) times, and the second 
2(n - q - 1) times, we will obtain a system of forms with the determinant 

02 = b,-l,lv * * .v b,-l, qbnq+l, * . ., b,,,, fl (hi - hj) n (Ai - hj) 
l<i< j<q q+l<i< k3 

It will not be equal to zero if no b,-, i, b”i is equal to zero. * 

If we have k linear forms 

big, + . . . + l&J., = 0 (i = n-k + 1.. . . n) 
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while among A,, . . . . A, there are k + 1 equal to each other, then for 
anypI+ . . . + pk = n all linear forms obtained by means of 2(Pj - l)- 
fold differentiation from the jth form in conjunction with the given ki 
forms will be linearly dependent. Indeed, the determinant of these forms 
can be represented, in accordance with Laplace's theorem, in the form of 
a sum of products of the type 

p, JJ (hi - hj), . . . , 11 Chi - hj) 1Ci-c j<n p~-l-cicj<:p~ 

If among Xi there are k + 1 equal to each other, then for any distribu- 
tion of them into k groups, one group will certainly contain a pair of 
equal Xi. Therefore, the products will vanish, including the determinant 
Dk, If there are no more than k equalities, then, distributing all X into 
k groups 

h 1,. . . , h PI, ?Q?~+' . . . I L, . . . , hph.++l, . * . , L 

in such a way that no one group would contain two equal numbers, we ob- 
tain the result that the linear system 

b n-,q+j,pl + . . * + 4+k+l.&, = 0 

bn--k+m+lq,+l + - . - + L-~~+?.PPP, = 0 

b %(Pk-lS1). ~~,<-~+l + . . . + bw,xz, = 0 

which is obtained after 2(pj - l)-fold differentiation of the (n - k + 
j)-th form, will lead to a system of forms with the determinant 

DI, = bn--h.+l,l , . . . , bn--h.+l.p,, . . . , bnn n (hi-kj)t * * * 9 fl (kekj) 

l<icj,<n ph.-lcicj<n 

which is nonzero if no b.. is nonzero. 'I 

As is known, any normal oscillation of a system of first approxima- 
tion can be expressed in the form 

In order that this solution at all times satisfy the equality 

b*,z, + s e + + binX:n = 0 (i=n--k+l,...,n) 

it is necessary that these equalities be at all times satisfied by all 
of their time derivatives as well. 

Differentiating each of the equalities 2(pi - 1) times and letting 
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t = 0, we find that Ai, Bi are dependent on the equalities 

bi*h,S-lA + . . * + 6*p~h,“-lA,, = 0 (i=n-k+l,...,n) 

bilh,S-‘B, + e e . -1 Di,h,,“-“2B,, zz 0 
(s=l,...,$$) 

Multiplying each jth column of the determinant in the second system 
by A.‘j2, it is easy to see that we will obtain identically the determi- 
nant’of the first system. It is also easy to see that it coincides with 
the determinant which was studied above. If this determinant is nonzero, 
then it is clear that no non-trivial solution satisfying these equalities 
exists. 

All further differentiations lead to the conclusion that Ai, Bi, Xi”’ 
satisfy the one and the same infinite system of equations with the matrix 

(/:tjhj”-l) (i=IL--h.fl(..., rl; j=l,...,, n; s=l,Z ,...) 

which represents identically the matrix of the system (1.71, (1.8); the 
system (1.71, (1.8) can be obtained by linear substitution from Equations 
(1.2), (1.5), (1.6) and the equations q,- k+ 1 = qn = 0. It is obvious 
that these equations will certainly have a non-trivial solution if among 
the principal frequencies of the system there are k + 1 equal to A, = 
. . . = xk+ 1, and if it is assumed that Ak+ 2 = . . . = A,, = 0, while for 
the definition of A,, . . . , Ak, 1 one writes the equation 

‘Ibese equations will necessarily have a non-trivial solution, and in 
the fulfilment of these equations and the condition Bi = Ai/Xi112 the 
linear forms q,- k+ 1, . . . , qn will become zero identically in t, as also 
their time derivatives. Consequently, in the presence of k + 1 equalities 
of Xi in the system (1. l), there will always be at least one non-vanish- 
ing solution. 

Let us formulate the result. 

‘Theorem. 1) In order that partial dissipation along k < n coordinates 
of a system render asymptotically stable in the first approximation the 
isolated and stable position of equilibrium of a mechanical system, in 
the presence of only potential forces, the potential function expansion 
of which in the neighborhood of the equilibrium begins as a definite 
negative quadratic form, it is necessary and sufficient that the equa- 
tions q,-k+l = . . . = qn = 0 and Equations (1.8) which are obtained 
from them by differentiation on the strength of the system of first 
approximation, would have a matrix of rank n. Ibis condition will be 
sufficient for asymptotic stability on the strength of the exact equations. 
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2) If there are k + 1 equal frequencies among the principal frequen- 
cies of first approximation, then no dissipation along any k coordinates 
will make the equilibrium asymptotically stable in the first approxima- 
tion. 

3) If there are no more than k equal principal frequencies, then it 
is always possible to indicate k such generalized coordinates, the in- 
troduction of partial dissipation along which will result in asymptotic 
stability of the equilibrium qi = 0. 

'Ihe theorem of J3arbashin and Krasovskii can be interpreted as follows 
when it is applied to a mechanical system of the type considered. 

If one imposes upon a mechanical system certain constraints 

BilXl + . . . + binZ,i = 0 

where x1, . . . . x, are normal coordinates of the system, then the Lagrange 
equations of the first kind will be of the form 

Where Xi are terms of higher than first order. 

In accordance with the proof of Barbashin and Krasovskii it is suffi- 
cient for asymptotic stability that there be no solution of the system 

;.; = h.y. .:- -yi 1-1 (i = 1, . ) 12) 

fully located in the region 

if the dissipation is introduced along the coordinates 

qi = bilx1 + . . . + bi,.r,, 

Let these conditions be satisfied. 'Ihis means that the system (1.9) 
has no solution along which 

; fJjbji := (j (i = 3, ) n) 
j---n-S+1 

at all times during motion. It follows necessarily from these equations 
that there is no solution along which all Oi would become zero. The 
quantities Oj may be interpreted as the constraint reactions, as follows 
from the theorem. 
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If it is possible to apply additional constraints upon the type of 
system considered in such a way that there should exist no motion in the 
constrained system along which all reactions of new constraints would 
vanish, then the introduction of dissipative forces in the original 
system acting along those coordinates which have been removed in the con- 
strained system, by the application of the additional constraints, will 
make the equilibrium of the mechanical system asymptotically stable. 

2. In order to limit ourselves to the most easily proved consequences 
of the theorem of Barbashin and Krasovskii let us consider the system 
(0.1) in the form 

(2.1) 

Here p 
si 

are bounded periodic functions of time, while Xi are holo- 
morphic, with respect to xi, functions with periodic coefficients, con- 
tinuous and bounded. 

Let dv/dt become zero only under the conditions 

FI (q, . . . , an, t) = . . . = Fk (q, . . . , s,t) = 0 

Naturally, if there exists a half-trajectory xi(t) satisfying these 
equalities, then along it the conditions 

diF 
“= 0 

dlL 
(s=- l)..., k; i=l,2 )...) 

are necessarily satisfied, and consequently there exists a non-trivial 
solution of the equation 

y=z %?-o 
i ) 

(i = 0, 1, . ; s = 1, k) 
i.s t 

If each of the derivatives is now thought of as taken on the strength 
of Equations (2.1), then the desired solution must satisfy an infinite 
system of equations with variables x1, . . . . x,,, t. Such a case will 
certainly not be found if the function Y for any fixed t > 0 is of de- 
finite sign with respect to xl, . . . . x,. 

On the basis of the known theorem of Liapunov the system (2.1) can, 
by means of a non-special linear transformation, be transformed into 

<h/i 
A = hi?Ji .f I'i dl 

Here hi are complex numbers with non-positive real parts which split 
into pairs of complex-conjugates. 
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Let F,, . . . . F, after substitution become Cp,, . . . . Qi, where their 
expansions in yl, . . . . y, are of the form 

and where b 
imaginary. 

ip+ b. tap+ 1 are real numbers, hip - bi p+ 1 are purely , 

If the system of equations 

hi* hi .2/* + . * . i- bin Q/n = (J (s = 0, 1, . . . . i=l,...,/i) 

has a matrix of rank n, then the system of first approximation, as well 
as the original system (2.11, will be asymptotically stable. If it is of 
lower rank than II, then the system of first approximation will not be 
asymptotically stable. This will always occur if among A,, . . . . A,, there 
are k + 1 equal to each other. If such a case does not occur, then it is 
always possible to indicate such linear parts of the function Qi that 
asymptotic stability would take place for all variables. 

If it should happen that the rank of the indicated matrix is equal to 
n- m, then choosing n - m independent equations from the system d%/ 
dtb = 0 and solving them with respect to the first n - s variables, we 
substitute the result into the remaining equations. 'Ihe expansions of 
the result of the substitution will begin with the quadratic forms of m 

variables. If among the quadratic forms one can choose a linear combina- 
tion with coefficients which are dependent on time in such a way that it 
represents a positive-definite form of its variables, then surely the 
asymptotic stability will take place. 

3. Consider a mechanical system, the kinetic energy T of which does 
not depend explicitly on t, q,- k+ 1, . . . . q,,, the last generalized co- 
ordinates, while the potential energy is of the form 

u = u, (q1, . . . 1 qn-J + &I--k+lqn-1i+1+ f * ' + Kq, 

Here F,- k+ 1, . . . . F, are constants. Let the system be subject also 
to dissipative forces with the dissipative function 

F=i i pij;iSj (1 > k) 
ij=n--l+l 

embracing the last k coordinates and a few others. If is shown in [7 1 
that the given system has a stationary solution 
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91= . . . qn-k = 0, c--h.+1 = g-k+1 (t - to), . . . ) q, = 4; (t - to) 

Where Gnsk+ p, . . . . &," are certain constants if they satisfy the 
equations 

(i = 1, 2, . . . , n -Irk), Fi+ 2 f3ij Cji”=O (i=n--k+l,...,n) 
j=n-k 

It is shown also that if the quadratic part of the T- U expansion in 
the neighborhood of the stationary motion is a positive-definite func- 
tion with respect to the variations of the coordinates and velocities, 
then for complete dissipation the stationary motion will be asymptotic- 
ally stable. 

By means of a method analogous to that of Section 1, one can show that 
the asymptotic stability in the presence of partial dissipation along the 
last coordinates will not exist only in the case where the equations of 
perturbed motion will possess trajectories located in the region 

4 “-k+l = . . . = q,,= 0. 

The test for sign-definiteness of the quadratic part of the T- U 
function expansion can also be simplified. As was shown by Routh [ 8 1 , 
the function T expressed by means of the variables ql, . . . . qn-kr 
P”-I+19 --St Pn 

n-k 

XT= zuijiiij+ i rijpipj 
ij=l ij=n-k+i 

will not contain terms with products of velocity by the impulse. 

Since i1” = . . . is- k” = 0, it is easy to note that 

ij=l i jzn-k+l 

s=1....,n-k 

The first sum is a positive-definite quadratic form of the velocities, 
the second is a variation of impulses, while the third and fourth sums 
contain no cyclical velocities. lherefore, the conditions of sign- 
definiteness are reduced to the positiveness of Ak, 1, . . . . A,, diagonal 
minors of the quadratic form discriminant consisting of the last three 
sums. ‘lhese minors border the discriminant of the second sum, known to 
be positive. 
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As already shown above, the motion will be asymptotically stable with 
respect to the last 1 coordinates, where 1 > k, since the existence of 

the nonperturbed motion of the type indicated presupposes the presence 
of dissipation along the last k coordinates. 

In the case when the nonperturbed motion is not asymptotically stable, 
the equations of motion must necessarily have a particular solution 

41 = 4i Ct) (i<n---.), qi = ii’ (t - to) (i > I2 - Ir) 

whereupon the first n - k functions are not all zero. 

‘Ihe equations which must be satisfied by these n - k functions can be 
obtained from the lagrange function of the type 

L = T tk, . . . , in-k, h,-,+,t . . . 1 ino, 41, . . , q,,hk) + U, 

and the last k equations will be of the form 

ddl’ o 
-y= 
dt dq, 

(i=n-k+-l,,...u) 

or 
n-k 

xaijqif 5 “- Uijqi - Cj (I’=“-kjl,..., nj 

i=l &n--k+1 

while the first equations 

%j qj t i aij;iyg 2% 
dc& 

(i = 1 9.. 1 R - Ii; 

j=n-k+l 
L 

Finally, we are led to the problem, whether the system with the 
kinetic energy of the form 

n-k 

T’ = T, + T, = 2 aij ii ij + 2 aij qiqj4 
ij=L i,<n-k 

j>n-k 

and the potential function of the form 

.o. a aij Qi 4j 

ij=n-k+l 

possess a motion for which the expressions 

n-k 
x &jqj + i ’ -  ’ ilij qi -  Ci (i-/L-k+l,...,n) (3.1) 

tj2=1 j=n-k+l 
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would remain constant and possibly q,,- l+ 1 = . . . q,,- k = 0, where this 
motion would at all times remain arbitrarily close to the origin of the 
coordinates. If the quadratic forms 

are put into a canonical form by a linear.transformation which is general 
to both forms, and if after this transformation the expression for Twill 
become 

T,’ = 2 pij qj”&i 
i,<n--B 
3 .n--lr’ 

then the equations of first approximation will be of the form 

while the variations of their particular integrals (3.1) will be of the 
form 

If in the last equations one can define 1 < k variables xi, ;i as 
functions of the remaining ones and c,-k+ 1, . . . . c,, then after sub- 
stitution of these solutions into (3.2) we will obtain a nonhomogeneous 
system. Since a homogeneous system has no first time-independent linear 
integrals, the desired particular solution will consists of a sum of a 
particular solution of a homogeneous system plus a certain constant 
vector. Therefore, if such a solution exists, then there exists neces- 
sarily a particular solution of the homogeneous system and vice versa. 

lhls ) the question is reduced to the following: is there a solution 
for the system (3.2) restricted by the conditions (3.3) for c,-~+ 1 = 
. . . = c, = 0 and also qnml+ 1 = . . . q,,- k = O? 

It is known not to exist if the rank of the matrix from these forms, 
obtained by infinite differentiation on the strength of EQuation (3.2), 
is equal to n - 1. 

xhus ) if the rank of the system matrix, obtained from Equations (3.3) 
q,,- l+ 1 = q,,-k = 0 by infinite differentiation on the strength of 
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Equations (3.2), is n - 1, then the motion will be asymptotically stable 
and only then will the motion be asymptotically stable in the first 
approximation. 

I am grateful to V.V. Rumiantsev and V.A. Sarychev for discussions of 
this work. 
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